

Machine learning for the environment: monitoring the pulse of our Planet with remotely sensed data

Prof. Devis Tuia, EPFL

 École polytechnique fédérale de Lausanne

EPFL There were many sensor data to monitor Earth in 2015

- 333 Earth Observation satellites in orbit in 2015 [ucsusa.org].
- 10'000 recreational drones registered in the U.S. by 2020 [FAA].
- 20 Pb of oblique photos in Google Street View in 2015 [Google Maps].

Open access information

EPFL There are many sensor data to monitor Earth in 2015 2023

- 333 1'005 Earth Observation satellites in orbit in 2023 [ucsusa.org].
- 10'000 1'100'000 recreational drones registered in the U.S in 2023. [FAA].
- 170 billions of oblique photos in Google Street View in 2020 [Google Maps].

ie data deluge 01111010000001)

000(111)11010000

10)000000011110

01)100/1000

MACHINE LEARNING

EPFL Machine learning in two minutes

7

Al4Copernicus 2023

EPFL Why now : statistical and computational models are good enough...

 Machine learning has reached a certain maturity... and percolated in many fields of science.

2022

Al4Copernicus 2023

2015

WILEY

EPFL Building environmental deep learning models

Al4Copernicus 2023

Building environmental deep learning models

 We used debris events found in news and social media, then hand labeled on images by experts.

Mifdal, J., Longépé, N., and **Rußwurm, M.**: Towards detecting floating objects on a global scale with spatial features using Sentinel-2, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2021, 285–293,

EPFL Building environmental deep learning models that are accurate

- We used debris events found in news and social media, then hand labeled on images by experts.
- Our learning models detect plastics at sea from space with ~ 85% accuracy

M. Russwurm, Venkatesam S. J., and **D. Tuia.** Large-scale detection of marine debris in coastal areas with Sentinel-2. *Under review*.

Detections on the Plastic Litter project 2022

Building environmental deep learning Models that are accurate and useful

detection module t₂ tracking module

THE OCEAN

EPFL With Earth observation and AI, we can

develop computational approaches to the environmental sciences that are accurate

EPFL With Earth observation and AI, we can

develop computational approaches to the environmental sciences that are accurate, but also scalable, knowledge-driven and accessible to everyone.

EPFL

Towards environmental deep learning that is

Accurate Scalable Knowledge-driven Accessible to anyone

London

Accra Lagos

Rio de Janeiro

Tunisia

Bay of Biscay

-Kent Point Farm

-New Orleans

Toledo

San Francisco

San Diego

Panama

Tangshan

Shengsi

-Tung Chung

Mandaluvong

Turkmenistan

Vung Tau

Kolkata

Port Alfred

Da Nang

Long Xuyen

[Mifdal et al., 2020]

- No model should work only on
 - one image
 - one region of the world
 - one task

Al4Copernicus 2023

- No model should work only on
 - one image
 - one region of the world
 - one task

D. Tuia, **B. Kellenberger**, S. Beery, B. Costelloe, S. Zuffi, B. Risse, A. Mathis, M. W. Mathis, F. van Langevelde, T. Burghardt, R. Kays, H. Klinck, M. Wikelski, I. D. Couzin, G. van Horn, M. C. Crofoot, C. V. Stewart, and T. Berger-Wolf. Perspectives in machine learning for wildlife conservation. *Nature Comm.*, 13(792), 2022.

EPFL Going even further: scaling across locations and tasks

M. Russwurm, S. Wang, **B. Kellenberger**, R. Roscher, and **D. Tuia.** Meta-learning to address diverse earth observation problems across resolutions. *Under review*.

EPFL Going even further: scaling across locations and tasks

Small, but distributed learning problems!		5-shot problem dataset spatial res. spectral res. # classes # training imgs	AnthPr. [40] 10m 10 bands 2 10	crop type mapping DENETHOR [20] 3m 4 bands 3 15	land cover of DFC2020 [37] 10m 13 bands 5 25	EuroSAT [14] 10m 13 bands 10 50	fl. obj. [26] 10m 12 bands 2 10	urban scenes NWPU [8] < 1m 3 bands 5 25
-	model	rank (↓)			accuracy (†)			
Meta-L	METEOR	3.6	83.7	75.6	87.7	60.9	90.8	57.4
Self-sup.	MOSAIKS [31] DINO [6] SECO [24] SSLTRANSRS [34] SSL4EO [52] BASELINE	4.2 4.3 5.0 4.7 5.3 5.5 6.8*	86.4 91.2 91.4 90.7 96.2 89.0	76.4 66.2 61.7 65.5 58.0 60.8	82.3 56.6 67.6 76.3 80.2 87.4	57.9 61.3 62.7 59.7 59.1 39.8	83.4 88.8 65.1 65.9 78.9 82.4 69.8	54.0 70.6 67.4 52.1 49.9 36.7
Fraditional	PROTO [39] IMAGENET SCRATCH	8.3** 8.8* 9.5**	59.7 83.7 64.8	56.2 59.7 61.1	76.9 50.8 66.5	46.1 42.7 25.7	67.3 64.1 64.4	39.1 60.5 32.3

EPFL This opens opportunities for large scale studies

https://earthobservatory.nasa.gov/images/149554/finding-meteorite-hotspots-in-antarctica

V. Tollenaar, H. Zekollari, M. Russwurm, B. Kellenberger, S. Lhermitte, and F. Pattyn, D. Tuia. A new blue ice area map of Antarctica. In *European Geoscience Union (EGU) Meeting*, 2023.

EPFL And here comes the **BIA map!**

- Based on
 - 3 years of MODIS data (Jan-March 2008-2010)
 - RadarSat data 2008
 - Surface elevation data
- Developed a deep learning algorithm to predict presence of blue ice

Al4Copernicus 2023

Towards environmental deep learning that is

Accurate Scalable Knowledge-driven Accessible to anyone

Do we need to extract all information from data?

Many things about the world, we know them from knowledge

Common sense knowledge

Do we need to extract all information from data?

- Many things about the world, we know them from knowledge.
- Machine learning models tend to learn <u>everything</u> from data, as if we knew nothing about the world.

Do we need to extract all information from data?

- Many things about the world, we know them from knowledge.
- Machine learning models tend to learn <u>everything</u> from data, as if we knew nothing about the world.
- Intergrating domain knowledge is crucial for models that are meaningful

EPFL Integrating forest definitions in segmentation models Image: CNN Image: CNN

Valais Concepts extractor Corrections Corrections Corrections Corrections Corrections Corrections

T.-A. Nguyen, B. Kellenberger, and **D. Tuia**. Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning. *Remote Sens. Environ.*, 281(113217), 2022.

≥ 60

NF

NF/SF

CF/SF

NF

NF

OF

NF

NF

NF

EPFL Results better align to forest definitions

T.-A. Nguyen, B. Kellenberger, and **D. Tuia**. Mapping forest in the Swiss Alps treeline ecotone with explainable deep learning. *Remote Sens. Environ.*, 281(113217), 2022.

EPFL Injecting domain knowledge in species INISNE distribution models

Zbinden. R., N. van Tiel, B. Kellenberger, L. Hughes, and D. Tuia. Exploring neural networks and their potential for species distribution modeling. *Under review*.

Yale University

Al4Copernicus 2023

My view on **Remote sensing and Al**

Advance remote sensing science to monitor and protect Earth Interface disciplines and approaches Bring new, open tools making EO science accessible to anyone

🄰 @devistuia

My view on Remote sensing and Al

Advance remote sensing science to monitor and protect Earth

Interface disciplines and approaches

Bring new, open tools making EO science accessible to anyone

