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Short context introduction...

« EarthLab Luxembourg is a start-up company created at the
crossroad of ICT/A.I. and|Geo-Information
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« We created the “%7..500.5% platform as a Fast-Data platform

designed to process streams of data (EO and non-EO) using
classical treatments or Machine/Deep Learning models.
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| Short context introduction...

Inference engine using a Deep Learning model
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Example of treatment chain as modeled using Max-ICS
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| Short context introduction...
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USE YOUR MODEL
IN YOUR
TREATMENTS

MANAGE YOUR
DATASET

TEST YOUR
MODEL
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IUse of EO and non-EO images in Machine and Deep
Learning models

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

Classification

CAT GRASS, , CAT DOG, DOG, CAT DOG, DOG, CAT
. TREE,SKY , RN y
N N N
No objects, just pixels Single Object Multiple Object Tha e o C00 bk comao

The same concepts, imagined and defined for classical images can be
functionally applied to Earth Observation data.
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IThe multi-bands source (hyperspectral/radar polarization)
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Multi-bands source composition
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lllustration of U-NET network

Most of the Deep Learning models are based on a three bands (RGB) input
shape forcing a composition of a false colour image.

Some models (like UNET) can integrate adapted to accept multi-band input
shapes but nearly all pre-trained networks are provided as 3 bands input.
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The “edges” and geometry (re effects
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Land-use annotations Garage doors detection Crop classification annotations

Deep Learning models are using the geometry representation (convolutions,
atrous convolution...) giving the satellite and even aerial representation more
difficult to apply.

Even more, the edges do not have the same signification in EO and non-EO.
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The evidence of timeseries
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The time dimension (thanks to revisit and calibration) is an important asset of EO.

Difficult to maintain within a single model the spatial dimensions, multi-bands and
timeseries. Possibility to include hybrid networks like applied in image captioning
(mixed convolution/RNN).

In that context pre-processing is key!
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The requirement of pre-processing
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Courtesy of Humboldt State University

IR Sentinel-2 reflectance input image - atmospherically corrected image

Pre-processing includes sensor radiance to surface reflectance correction
(radiometric calibration) and orthorectifying

Pre-processing includes overlaying and georeferencing several geo-spatial
layers (of different sources).

Especially for timeseries analysis pre-processing is essential.
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IWhen differences are too high... 1/3
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Rush capture (source: plane NOAA)
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IWhen differences are too high... 2/3
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When differences are too high... 3/3
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Abplication of (Siaese) N (Gein'erative Adversary Networks) can be very
useful to handle some scale, geometric and calibration problem.
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| Conclusions

Application of Deep Learning is not as “simple” as
for non-EO data.

Machine Learning (SVM, Random Forrest...) are still
largely applied at the pixel level.

Specialised sub-field in Deep Learning that requires
specific efforts and specific tools.

Strong impact on the Explainability.
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