New ways of interacting with remote
sensing images: an Al perspective
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Applying deep learning with optical remote
sensing data seems very easy

June 28th 2018: Bing releases 125 million Building Footprints in the US as
Open Data
How?
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Applying deep learning with optical remote
sensing data seems very easy

IGARSS 2018: Large-scale semantic classification: outcome of the first year
of Inria aerial image labeling benchmark [Huang et al., 2018]
Winner:
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Apply U-Net [Ronneberger et al., 2015] with a modified inference method
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The low hanging fruit is a blessing...

® We can advance several applications with this technology from CS

® Massive increase of "DL-in-RS” papers

[graphic by XX Zhu, 2019]
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The low hanging fruit is a blessing... in disguise.

® We can advance several applications with this technology from CS
® Massive increase of "DL-in-RS” papers

" One could be easily lost in all this

(=]

Remote Sensing | Free Full-Text | A . Deep Learning for Target Obje.. Deep Learning for Remote Sensing Supervised Classification ...

1l
{§

S ——— —_—

—,, o
data-driven discovery in solid Ea... Deep-Learning-Based Classification ... Crop yield analysis — Sustain...
science.sciencemag.org ndpi.com semanticscholar.o sustain.stanford.edu

forward /inference
‘/—’ . 78 - "-- |
- s ~

backward/learning
Pow—
/ | I -

2 "-- | -
; I ™ || = |
ol 205 2005 2007 publication years -
. V SN
WAGENINGEN % 5
UNIVERSITY & RESEARCH

100years

1918 — 2018

Classes Memberships

LU 176 o6 21
o

7 5% oph 50 07 S

2

gt Layer () Hiddes Loy ) Outpt L

Figure 2: Typical MLP archaecture with deep leaming



How advanced is DL in Geo-info data science?

1. Am I interested only in classifying pixels?

>> then, it is pretty much advanced.
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How advanced is DL in Geo-info data science?

1. Am I interested only in classifying pixels?

>> then, it is pretty much advanced.

2. Do I want to use existing DL for my application?

>> ] should be ok.

3. Do I want to use the full power of images (beyond RGB)?

>> oh... this a pre-trained deep net can’t do ®

4. Am I forgetting something?




This talk is about human / machine interaction

Users seem to be forgotten in the “Al for remote sensing”.

Without them, no training data, so no models.

Vargas, Tuia, Falcao. Supporting digital humanitarians in OpenStreetMap: the role of deep learning
and human-machine interaction. 1JGIS, Submitted.

But why are we developing AlI, if not for them?

Lobry, Marcos, Murray, Tuia. Remote Sensing Visual Question Answering. IGARSS 2019, Yokohama
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Why interacting with labelers it relevant?

. Humanitarian
Q‘ MapSW/,Oe OpenStreetMap
Team
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Supporting volunteers in OpenStreetMap

[Vargas et al., I1JGIS, under review]
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Supporting volunteers in OpenStreetMap

[Vargas et al., I1JGIS, under review]
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Supporting volunteers in OpenStreetMap

[Vargas et al., I1JGIS, under review]
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Supporting volunteers in OpenStreetMap

[Vargas et al., I1JGIS, under review]
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Supporting volunteers in OpenStreetMap

[Vargas et al., I1JGIS, under review]
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The interactive system

cmwm% x&alected tiles

Probability map computation

Alignment of annotations

MRF

Split the aerial image in tiles

Update
CNN model

als

Select tiles
for correction

User

Evaluate
Stopping
Criteria
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The interactive system

Probability map computatio

Split the aerial image in tiles
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Interactive module

Split the aerial image in tiles

L

Select tiles
for correction

Selected tiles

Classifier
User
Update 4_
CNN model

Evaluate
Stopping
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Interactive module

Classifier

Split the aerial image in tiles

Update
CNN model

L

Select tiles
for correction

Evaluate
Stopping
Criteria
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Interactive module

SpliW tiles

Select tiles
for correction

- Compare
- Estimate number
of edits

Classifier

Update
CNN model

Evaluate
Stopping
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The Tanzania dataset

23.75 km2 of Bing imagery -9
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The Tanzania dataset

. . i, Musanzz .. : )u. N bi
23.75 km2 of Bing imagery CRLe e o o
- RGB, 30cm resolution R Rt - * = iy
. . . ;umgrqe pharg ( P . . ‘ K Mombasa’
- each dot is multiple images i A
’ O

Kalem e ]
2

Training area: 3134 OSM footprints ‘ Tanzanla ,
Test area: 1392 OSM footprints. |

BUT:

Lindi

- missing buildings

- annotation errors ® -
100k_u r
Correction needs approx. 900 edits! @ Train set annotations OpenStrestiian

@ Evaluation set annotations

[/
WAGENINGEN % Page 23
UNIVERSITY & RESEARCH

100years
1918 2018



Results for real interaction [vargas et al., IJGIS, under review]

The problematic images are found faster!
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This talk is about human / machine interaction

User seem to be forgotten in the “Al for remote sensing”.

But why are we developing AlI, if not for them?

Lobry, Marcos, Murray, Tuia. Remote Sensing Visual Question Answering. IGARSS 2019, Yokohama
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We are pretty good at solving single tasks
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We are pretty good at solving single tasks

How many cars?

Deep Neural Network

Update parameters
@"'\" S

Loss function

Ground Truth —— 12 /

[Lobry and Tuia, JURSE 2019; Lang et al., LPS 2019]
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We are pretty good at solving single tasks

Are there trees?

A

Encoder Decoder
conv + BN + ReLU + pooling upsampling + conv + BN 4+ ReLU
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[Audebert et al., Maggiori et al.; Volpi and Tuia; ...]
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We are not very good at reacting to
unforeseen questions

What is the road %°?

Is it Paris? Are there trees?
Am I in a city?

How many cars?
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But this has great potential.

" Non-experts are ... non technical experts.
" Non-experts want answer to specific questions.

" Non-experts want to formulate questions as sentences.
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What do we need?

® For web-search it works a bit like that.

Google

deforestation

Google Search I'm Feeling Lucky

Google offered in: Nederlands Frysk

Advertising Business About How Search works
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What do we need?

Google

For web-search it works a bit like that.

deforestation y Q

Q Al (@) Images [ News [ Videos (8 Maps i More Settings  Tools

About 23.700.000 results (0,51 seconds)

Deforestation is the permanent destruction of forests
in order to make the land available for other uses. An
estimated 18 million acres (7.3 million hectares) of
forest, which is roughly the size of the country of
Panama, are lost each year, according to the United
Nations' Food and Agriculture Organization (FAO).

More.images

Apr3,2018 Deforestation <
Deforestation: Facts, Causes & Effects - Live Science
https://www.livescience.com/27692-deforestation.html| D ion, cl ing or clearing is the removal of a
forest or stand of trees from land which is then converted to a non-forest
© About this result @ Feedback use. Deforestation can involve conversion of forest land to farms,

ranches, or urban use. The most concentrated deforestation occurs in
tropical rainforests. Wikipedia

Top stories
Feedback

Brazil registers huge Brazil: huge rise in Sharp rise in Amazon

spike in Amazon Amazon destruction deforestation in Brazil

deforestation under Bolsonaro, under Bolsonaro
figures show

DW The Guardian Euronews

14 hours ago 1 day ago 18 hours ago

—> More for deforestation

b [TGRS]RSVQA.zip ~
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What do we need?

" For web-search it works a bit like that.
" With satellite images it just doesn’t work

(it's normal. It wasn't built for that)
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But what if you could... ask questions to

remote sensing images?
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Source: CS unplugged.

34



Remote sensing visual question answering (RSVQA)

An Image
(in pixels)

v

A question
(in English)

WAGENINGEN % [Lobry, Marcos, Murray, Tuia, IGARSS 2019] 35
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A. Features extraction B. Fusion C. Prediction
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Asking questions about the Netherlands

® We created a dataset of
— Sentinel-2 images (RGB)
— O scenes

— 772 tiles (256 x 256)

- 77’232 {image-question-answer}
triplets using OSM vector data

— Covers the whole Netherlands

WAGENINGEN
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Antwerpen

Belgié / Belgique /
Lille Belgien
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How do we train this monster?

" We generated 77’232 {image, question, answer} triplets

"How many roads are present in the image?"

Road Base question

"Is there a small retail place?"
Retail ——  Size —(m— Base question

"Is there more buildings at the top of a circular religious place than roads in the image?"

Positional

Religious ——  Shape [
Road Comparison '— Base question

[/
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Results — Sentinel 2

79% overall accuracy!

73% if randomizing the image
part

Count questions less accurate

Type Accuracy

Count 67.01% (0.59%)
Presence 87.46% (0.06%)
Comparison | 81.50% (0.03%)
Rural/Urban | 90.00% (1.41%)

AA 81.49% (0.49%)

OA 79.08% (0.20%)
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The model can make a good
distinction between types of

questions
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True
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Results — Sentinel 2

Is it a rural or an urban area?

Ground truth

Rural

Prediction

Rural

Is it a rural or an urban area?

WAGENINGEN

UNIVERSITY & RESEARCH
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Urban

Prediction

Urban
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Results — Sentinel 2
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Are there more water areas than
commercial buildings?

Ground truth

Yes

Prediction

No

(i) LR, test set
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Results — Sentinel 2
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Results Sentinel 2
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Results — Sentinel 2

% "D Sneep.

Are there more water areas than

commercial buildings?

Are there more water areas than

commercial buildings?

Ground truth

Yes

Prediction

No

Ground truth

Yes

Prediction

No
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Visual Question Answering (VQA)

[Lobry, Marcos, Murray, Tuia, IGARSS 2019]

" Joins image recognition and natural language

processing deep models
" Opens use of EO image data to the laymen
" Towards an EO search engine

Universite
T

" A project in collaboration with: @ e CNES
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Take home messages

® CNNs are beautiful, indeed

" But they do not do everything.

" We have important problems to solve, societally relevant
" They are not ONLY about classifying pixels!

" They involve human operators and decision makers!

" Deep learning brings us new potential, let’s explore uncharted
territory!
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Thanks!

Contact me!

devis.tuia.googlepages.com (with links to codes!)

devis.tuia@wur.nl
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