AI4Copernicus

Situational awareness from the perspective of an autonomous vehicle

Marc Proesmans

Research leader / board member KU Leuven / TRACE vzw Marc.Proesmans@esat.kuleuven.be marc.Proesmans@trace.vision **AI4Copernicus**

Situational awareness from the perspective of an autonomous vehicle

R & D

🗅 KULeuven: 🚺

ר: KU LEUVEN

university computer vision lab at KU Leuven ESAT-**PSI**-VISICS (Prof. Luc Van Gool) TRACE:

"*Toyota Research on Automated Cars in Europe* non-profit company structure consortium of academia joining efforts in AD research KUL / ETH / MPI / CAM / CMP

Introduction : where are we with autonomous driving

- Ongoing race between diverse participants hip tech companies <> major car manufacturers
- Expectations of the industry is changing. impressive results <> strong statements on future AD L1 – L5 withdrawn later.
- There's just too much involved. The cars need to be able to not only drive themselves, they have to also communicate with each other.
- The solution is not obvious: standardization, different brands, different systems
- Need for high communication bandwidth such as 5G.

Introduction : *What should autonomy be ?*

• There will be a transition phase with both drivers and cars employing different forms of autonomy

Autonomous Automated driving Assisted

In our cooperation with Toyota, the attention goes to

- * safety,
- * comfort,
- * human-machine interface
- * add functionality gradually in the new cars

→ Make the technology a reliable co-pilot

POC : Woven City

- unique opportunity to develop future technologies, including a digital operating system for the city's infrastructure
- Fully connected ecosystem
- o Living laboratory

Autonomous cars
 Personal mobility
 Robotics
 Surveillance
 Artificial intelligence
 Smart homes

Research Summary

General context : two business models : B2B/MAAS vs. B2C

MAAS = Mobility As A Service :

- the autonomous taxi
- opportunity to install expensive sensors
- Less constraints on the looks
- recover costs later

Research Summary

General context: two business models : B2B/MAAS vs. B2C

MAAS = Mobility As A Service :

- the autonomous taxi
- opportunity to install expensive sensors
- Less constraints on the looks
- recover costs later

Commercial market = private cars:

- esthetic, streamlined look
 "no KFC bucket "
- budget friendly
- Safe
- but still to be able to do everything
 → cameras, vision

Research Summary

Our focus :

- Use commodity cameras (Parking View Monitor fisheyes + optional windshield cameras) to perceive environment instead of lidar(s).
- Main focus on camera-only perception.
 Other sensor for ground truth / evaluation / training
- Challenges : resolution, distortion, ..
 - \rightarrow push the limits of vision for AD.
- Multi-view/360° camera input
- 3D surround perception
- State-of-the-art + fast/real-time

TRACE : Research : S-O-T-A Development : Engineering, optimization, reality check

Semantic segmentation and instance segmentation for car object detection

AD driving vs. human machine interaction (HMI)

 Intuitively visualized ADAS info based on 3D 360deg surround camera perception.

KU LEUVE

- o provide valuable feedback without distracting the driver
- o Guarantee safety and comfort

Increase value to customer based on camera perception Reduce fatalities car-to-car, VRU, pedestrians

AD driving vs. human machine interaction (HMI)

 Intuitively visualized ADAS info based on 3D 360deg surround camera perception.

KU LEUVE

- o provide valuable feedback without distracting the driver
- o Guarantee safety and comfort

Increase value to customer based on camera perception Reduce fatalities car-to-car, VRU, pedestrians (night)

Highway: Awareness road users

- Early warning cut-in
- Merge / lane change assist
- Traffic Jam assist

Urban : Awareness Vulnerable Road Users(VRU)

- Detect pedestrians at junctions/crossings
- Detect hazards within the free space

- added value to various industrial R&D projects
- translating cutting edge research into real-life applications
- bridge the gap between state-of-the-art research and practice
 - Vision related software for AI based application
 - Traditional computer vision vs. Deep Learning

