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(Continual) Coalitional
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Prospective applications in satellite 1imaging
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Deep Learning

Example: classification and detection of tumors in mammograms




Deep learning is changing satellite imagery:

need for large labelled databases
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Adaptation to the problem: Deep learning on
J-2000 multiresolution tiled-images




Labelling is hard and costly!
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Labelling issue: 2 solutions

e Better : Active Learning
 More: Federated Learning
e Adaptive: Continual learning (of models and experts)

* The three together: coalitional Active Learning



Active Learning

Smart annotation queries




Active learning iterations/ can be continual
learning
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For very large images (Tiles of JPEG-2000)
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Intelligent selection
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Three methods

e Uncertainty (shake the model)
 Diversity (measure distances)
* Query-by-committee (agreement between competing models)
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aCCuracy

Active Learning for classification

Active Learning strategies on the patch approach
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Federated learning: learning together without

sharing data
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Federated Byzantine Agreement

Validators

« Two types of test databases:
global test database (G),
local test database (L)

« A “general” is randomly selected
among the validators

) ., _ ‘L/ Model
« The “general” creates a new candidate : integrity
v
block referencing the new model \ L Model
. . . . acceptance
« Every validator validates the viability N performance
(model) and integrity of this new / # evaluation _

candidate block
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o Each validator broadcasts its opinion
(positive or negative)

o The FBA process ends when 2/3
of the validators agree
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Coalitional active learning: our graal!

' Coaltional Active Learning is |
a dynamic system
* In support of continually

improving decisions for all
* In support of a continual

education of experts

!

SCALING will provide

* QOptimal coalitional gain

* Coalitional learnability

* Consensus for decision

* Human time budget bounds
* Incentivisation

* Trustworthy annotations
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How a coaliton of heterogeneous
hospitals sharing the same ways of caring
can share common DL models

-In support of high quality clinical decision
for all

-In support of a continual education of all
experts in the coalition

Time-budget of human experts
is optimally used

active learning sampling for

join optimized

1) Continual learning of
models (adapt to evolving
data and knowledge)

2) Continual learning of
experts (improvement of
expert’s annotations)

Jointly local and coalitional active learning

federated active learning

for heterogeneous hospitals sharing the same
ways of caring

1) Aggregation of multi-scaled annotations

2) Double model (local-coalitional) for bias
management and quality improvement

-> Emulation between accuracy (local learning)
and bias (coalitional learning)

Secure and incentivize participation in the coalition

secure data/image communication

algorithms for multiparty annotations

1) Providing unbiased ranking of annotation by experts
2) Traceability of accesses to images

3) Reward of participation through CEM credits




B UCLouvain

Thank you for your
attention!

Do not hesitate to ask any questions
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