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• As urban extent is growing fast, up-to-date information on built-up areas is critical for
urbanization management and assessment of economic losses caused by natural disasters.

• Earth Observation (EO) data such as Synthetic Aperture Radar (SAR) and optical data
enable consistent built-up area mapping across various temporal and spatial scales.

• Difficult to extract information of interest from EO data.

• Challenge for automatic algorithms to be scaled-up globally.

Sentinel-1 SAR data Sentinel-2 optical data



• Deep Learning (DL) methods are powerful for learning representations from complex and
high-dimensional data.

• Supervised DL models do not generalize well on test datasets that have a different distribution

with respect to training data.

• Training data is expensive to collect and update.

• Only sparse labelled training data are available at a large scale.

Here, we develop an automatic built-up area mapping framework using Sentinel-1 and
Sentinel-2 data that:

• 1) Automatically generates labels for training data in a given area of interest.

• 2) Trains a cross-fusion neural network using synergies between Sentinel-1 SAR and
Sententi-2 multi-spectral data.



Workflow of the automatic built-up area extraction framework

NDVI: Normalized Difference Vegetation Index NDRB: Normalized Difference Red Blue

NDBI: Normalized Difference Built-up Index BUI: Built-up Index



Automatic label generation
Santiago

Sentinel-1 backscattering based built-up mask Sentinel-2 NDBI based built-up mask

Sentinel-2 NDVI based vegetation mask

Sentinel-2 BUI based built-up mask

Sentinel-2 NDRB based bareness mask Labels of training data
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Cross-fusion Network with Virtual Adversarial Regularization

Sentinel-1 data

Sentinel-2 data

EMA: Exponential Moving Average

SG: Stop Gradient
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• It is possible to sample reliable training samples for built-up area mapping by exploring
synergies of SAR and optical data.

• Mitigate domain shift effects by performing training and inference at a local scale.

• The proposed automatic built-up area mapping framework achieves comparable results to
the SOTA products achieved by supervised learning based on manually-labelled training
data.

• The proposed framework is flexible to be applied across various temporal and spatial
scales.



Label super-resolution

10m optical data 0.5m optical data10m built-up mask 0.5m built-up mask?
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Thank you!
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