

Towards the First Global Multitemporal Data Set of Glacier Outlines

Konstantin Maslov, Claudio Persello, Thomas Schellenberger, Alfred Stein

25 May 2023

Introduction

Glaciers are an essential part of ecological systems and extremely sensitive to climate change

Source: Google Images

- Important indicators to monitor climate change
- Major source of freshwater
- Glacier retreat influences:
 - the local hydrology
 - sea level rise
 - positive albedo feedback
 - ecosystems and their biodiversity
 - risk of hazardous events

Existing GeoData

The only existing global inventory is Global Land Ice Measurements from Space (GLIMS). However, it suffers from several problems:

- Low temporal resolution (e.g., some glaciers are mapped only once)
- Mapping errors (georeferencing, subjectivities for debris-covered ice, ...)
- Not consistent as it is made by many different authors
- Poor metadata (errors, not informative)
- Limited automation (e.g., there are no unique IDs for glaciers)

• Regional glacier inventories generally share the same problems (and often are included in GLIMS)

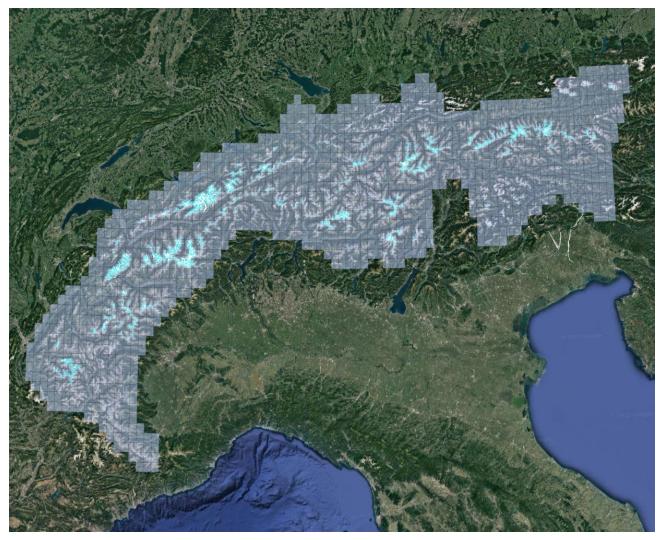
Research Objective

Build multitemporal large-scale glacier inventories and glacier mass balance datasets

MASSIVE Project: The overarching goal is to produce large-scale inventories, including detailed glacier maps and surface mass balance time series and to make them available to the wider scientific community

- We focus on developing fully-automated methods for glacier mapping based on deep learning
- To achieve global-scale mapping, we plan to deploy these methods in a cloud computing environment

Case Study: Mapping the Alps



Input data:

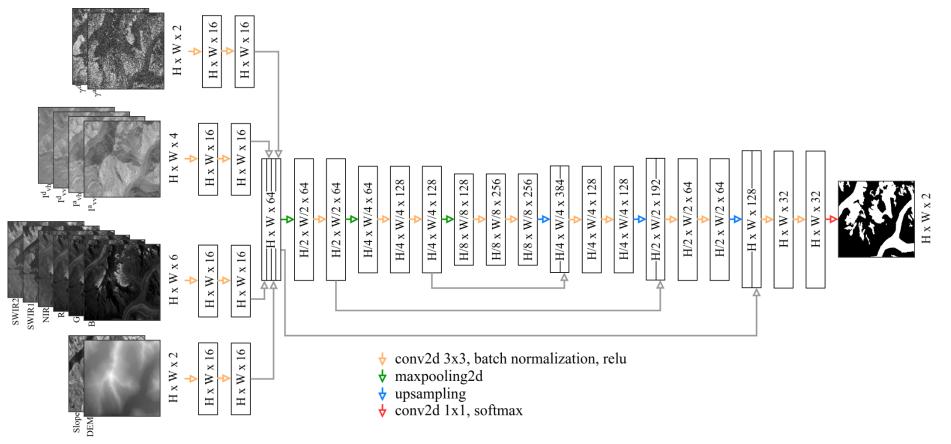
- Sentinel1/2 (optical + SAR)
- DEM
- Reference data: inventory by Paul et al., 2020

Challenges:

• debris-covered parts

Deep Learning Approach

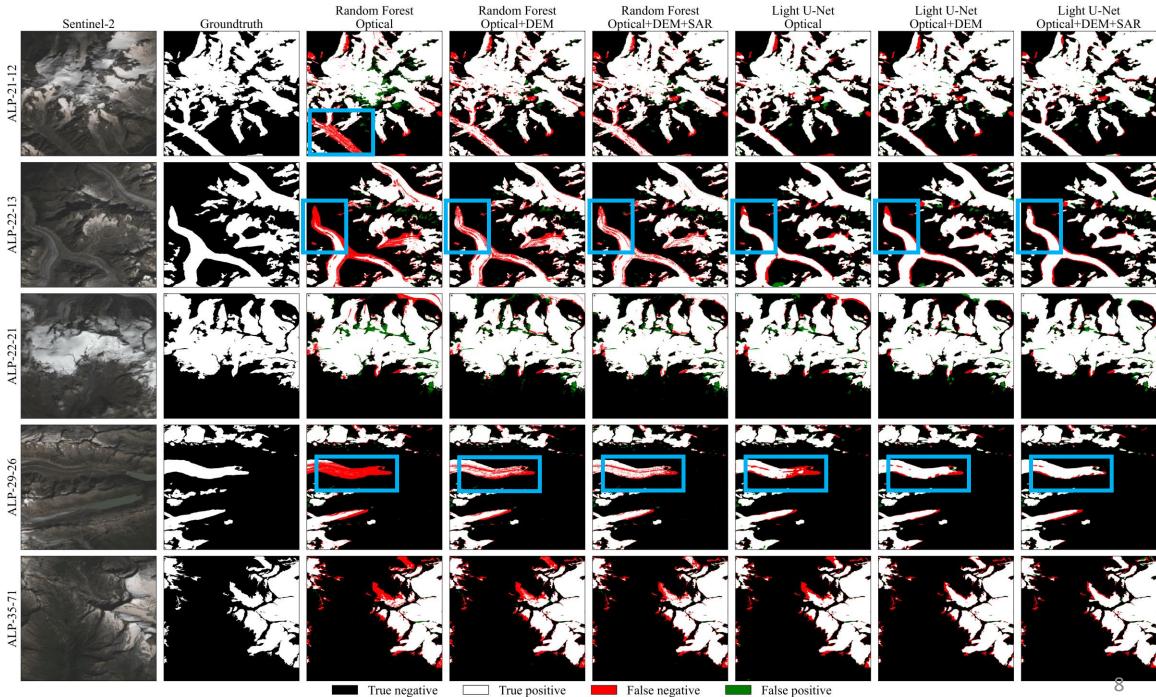
In-network fusion of multi-source data



Case Study Results: Mapping the Alps

Data	Precision	Recall	F1-score	loU				
Random forest								
Optical	0.929	0.828	0.876	0.779				
Optical+DEM	0.941	0.857	0.897	0.813				
Optical+DEM+SAR	0.944	0.870	0.905	0.827				
U-Net-based method								
Optical	0.946	0.893	0.919	0.850				
Optical+DEM	0.950	0.906	0.928	0.865				
Optical+DEM+SAR	0.948	0.917	0.932	0.873				

- U-Net-based methods outperform random forest
- Adding DEM and SAR data increases the performance (especially, for the glacier tongues)

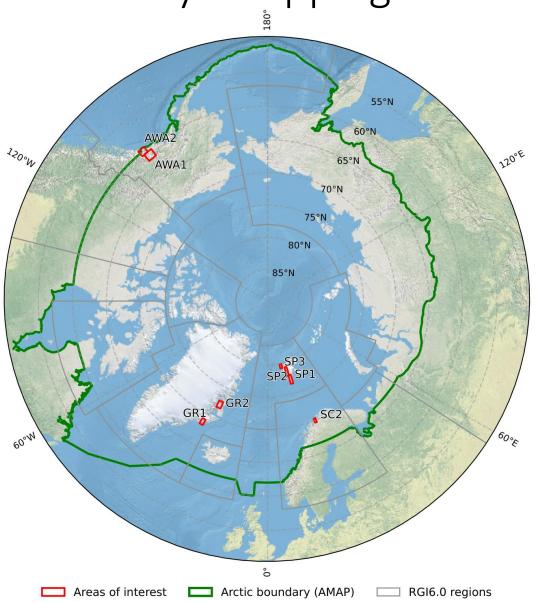


True positive

False negative

False positive

ð

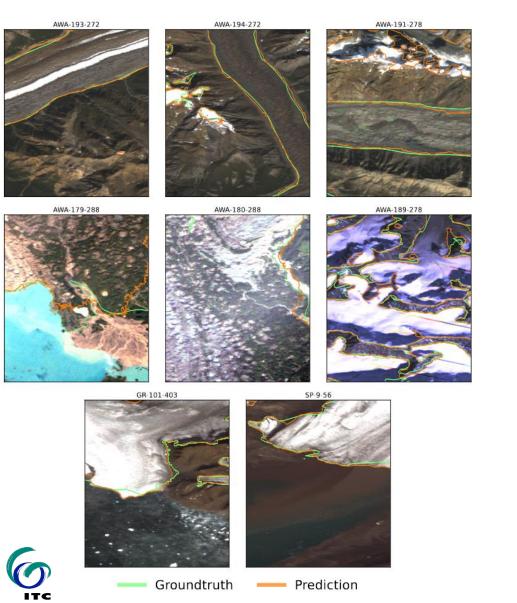


- In total, 8 AOIs in the Arctic
- As input features, we combined Landsat 5, Landsat 7, Landsat 8 and Sentinel-2 TOA images and several DEMs (depending on the data availability)
- As reference data, we use GLIMS entries everywhere except Svalbard, where we utilise an inventory by NPI, unpublished
- For mapping, we train a fully-convolutional model with the in-network fusion of multi-source data

• In general, the model performance is very good, except in some particular cases

Region	Precision	Recall	F1-score	loU	
Scandinavia	0.966	0.919	0.942	0.889	
Svalbard	0.966	0.961	0.963	0.929	
Greenland	0.975	0.950	0.963	0.928	
Alaska	0.954	0.950	0.952	0.908	
Overall	0.962	0.953	0.959	0.921	

• Further fine-tuning the model to a specific region can potentially improve the situation for this region



UNIVERSIT

OFIWFNI

- Accurate classification of debris-covered ice
- Surprisingly, reasonable boundary estimates for vegetation-covered glaciers (still not ideal)
- The model is robust to Landsat 5 artefacts at the scene boundaries
- Predictions for calving fronts are even better than the reference

SC2-55-82

Groundtruth

---- Prediction

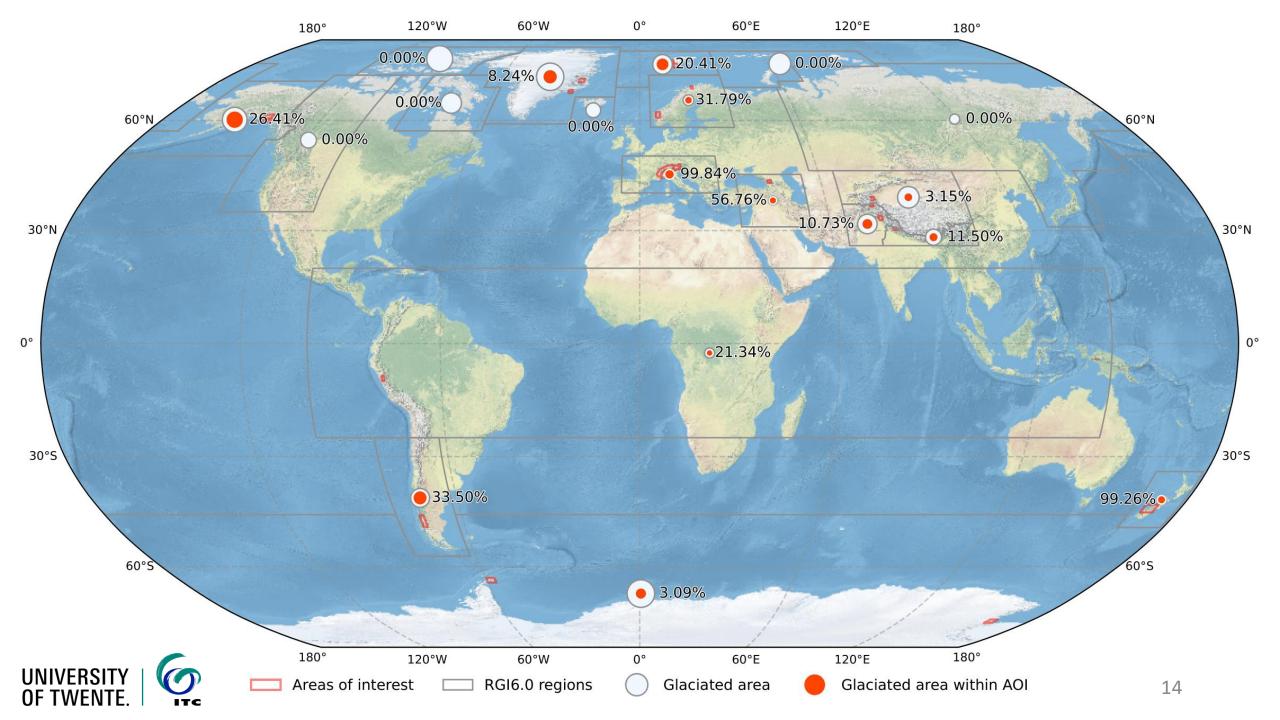
AWA-199-271

- Predictions for small ice (snow) chunks are not consistent
- Some dirty glacier tongues are still problematic to classify

Preparing a Multi-Regional Large-scale Dataset

We have collected a large-scale dataset for glacier outlines according to

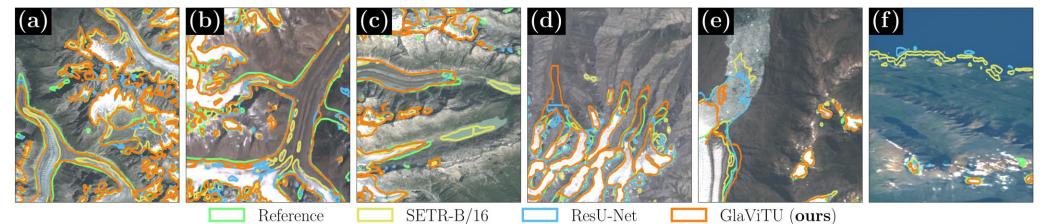
- **Diversity**: different kinds of glaciers (e.g., clean, debris-covered, vegetation-covered, small/large, blue ice) and their surroundings (e.g., alpine, marine)
- Coverage: 8% of glaciers worldwide (~273,900 km²) 10% of the glaciated area (not counting Greenland and Antarctic ice sheets)
- **Reference data**: GLIMS and two regional inventories for the Alps and Svalbard
- Earth Observation Data: six optical bands (B, G, R, NIR, SWIR1 and SWIR2) from Landsat 5, 7, 8 and Sentinel-2, elevation and slope data from SRTM, ALOS DEM, Copernicus DEM and some regional DEMs. Where available, SAR intensities and InSAR coherence from ENVISAT and Sentinel-1 as well as brightness temperature from Landsat
- Tiles: near-squared tiles (≈10x10 km²) randomly split into training (1614 tiles), validation (540) and testing (585)



Case Study: Multi-Regional Mapping

- Recently, we proposed a hybrid CNN-transformer model (GlaViTU) for multi-regional glacier mapping
- It has fewer parameters compared to ResU-Net and SETR-B/16 but shows higher performance and generalizes better

Model	Params	loU						loU	
		ALP	HMA	LL	NZ	SA	SC	IoU mean	std.dev.
SETR-B/16	102M	0.678	0.689	0.635	0.699	0.908	0.702	0.718	0.088
ResU-Net	33M	0.843	0.803	0.837	0.833	0.955	0.829	0.850	0.049
GlaViTU	10M	0.844	0.812	0.864	0.855	0.952	0.866	0.866	0.043



Going Global with Cloud Computing

- We plan to scale up our methods to achieve large-scale (global) mapping
- We employ cloud computing environments
- We have funding and an agreement with CloudFerro, they will provide us with access to CREODIAS

- Within CREODIAS, one can access EO data including products with global coverage (Sentinel-1 GRD, Sentinel-2 L1C, ENVISAT, ...)
- Some products (e.g., Landsat) can be downloaded only for Europe, but it is extendable
- They have tools to order additional data products (e.g., 6/12-day InSAR coherence)
- Virtual machines with powerful GPUs
- With these resources, we plan to automate glacier mapping worldwide with a temporal resolution superior to GLIMS

Conclusion

- The MASSIVE project aims at producing large-scale glacier inventories
- Three case studies have shown promising results towards applying deep learning for fully-automated glacier mapping on different scales
- We have collected a large dataset for glacier outlines mapping (to be published soon)
- With CREODIAS, we will scale up the methods to achieve global glacier mapping with a high temporal resolution

Remaining Challenges and Future Work

- Debris/vegetation-covered glaciers
- Generalization ability across different glacier types and environments
- Generate calibrated uncertainties and confidence intervals for area change
- Digital Twin GLACIERS

